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Resilience

Resilience is difficult to quantify because it is a systemic
metric...

State

(Bruneau et al 2003)
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System

Resilience is difficult to quantify because it is a systemic
metric...

..and system is complex

~ Final Rupture
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Resilience assessment — Resilience design

Assessing resilience is a difficult task,
Designing/building it into the system is even more

Two, non mutually exclusive strategies to invest resources

State

Robustness

Time
Redundancy

(Bruneau et al 2003)
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Prevention or cure?

(Meadows et al 2004)

State

Cure: reasons to wait

Time to next
election
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Prevention or cure?

Preventing the loss may be the only way
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Resilience 8
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(Zio 2018) g
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UNPREDICTABLE

Progetto CASE, Italy 2009

(Davis 2014)
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In praise of prevention

Uncertainty for t > t,,.x Much larger

What if the shock is TOO LARGE?
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L.A. " Northridge 1997
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Simulation at the

base of risk analysis

since the ’70s
because:
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1: Resilience-based
design



Resilience-based desigh: R - P

l.e. Performance-based design with resilience-based targets

The question is how safe is safe enough?

Codes started with life safety, they’'re moving to damage control,
will they end up with community resilience?
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Resilience-based design: R - P

Nuclear Power Plant Community
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(Mieler et al 2013)
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Resilience-based design: R - P
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adverse event
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undesired outcome
and associated
probabilities
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mean annual target for
each VCF tracking
variables

Primary and
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Expected annual disruption compatible
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Resilience-based design: R - P
Systemic analysis can fill this gap

Resilience-based performance target for a new hospital
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Servit:te Service %/;;?tn;nce Systems
importance ;
matrix (1xn) matrix (nxm) Primary Secondary
a : :
RS =
| g I g s = g
. S e |3
service o || £ system g &2 ¢ |5 & = |8
S 3 |3 5 |8 |¢ |8 |2 |8 |8
\ S L ke / o T n = w L |x
Public Aﬁrvices 0.3 6.3 @ 4 Police | 6.4 0.2 0.20.2
N\ 9 Health- a1
g T @5 A102 A1AID
& Food 0.5 0.1 0.1 .10.

New hospital tolerable
— disruption (unknown)

Dycr = luguee ogem P =l
CF ice 'S stem service
.Sg {n 92? Isystem,l Isystem,z Dsystem,l

nxm mx.
D

system,2

=1
142 43 2 1%} qqoy A3 Buildings-aneHifelin

D _ DVCF - IserviceIsystem.ZDsystem,Z
system,1 — | |
service 'system,1
(Y L

| | |
Sgce prgegit Bs?t%"l * sgce pryen? %S?te@’z Disruption to existing
4] 8 i nd lifaline

BEEEEEEEEEE T



2. System model



System functional model
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« Source capacity still missing
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System functional model

Power networks

Power networks: much more difficult problem
(SECD formulated in 1955 still no fast/robust solution technique)

People are doing everything ranging from pure connectivity, to DC
(linearized), to AC (nonlinear). Truth is that even AC is incomplete
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3: Components’
models



Component damage model

Systemic analysis — 100s or 1000s of components — surrogate
fragility p(LS;;|1I;) — dIRYGE given intensity p(Ci|1;)

I; is just one parameter of ground motion

I;|I; other GM parameters depend on site

G/l
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Fragility is structure & site-dependen

Fragility from field damage — difficult to gener
simulation
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Component damage model

Fragility analysis via numerical simulation is a delicate business.
Results depend on: ground motians, numericab model, analysis

method, statistical method and modelled uncertainty
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Component damage model

Refined fragility analysis of archetype buildings should not be
used to support fragility functions for classes of assets!
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Conclusions



Conclusions

 Resilience is improved by reducing vulnerability and
Improving response/recovery

 Vulnerability reduction seems the most reliable, given
the uncertainty in t > tg, 0k

- Components’ damage: need better surrogate models
Fundamental research in structural and geotechnical
engineering is still needed

« Systems’ behaviour: need more realistic
representation (flow! Or enhanced/smart
connectivity...)

* If former two are achieved, systemic analysis will be
reliable enough to link performance of the components
to global community resilience goals. This will provide:

« Avrational basis for performance targets in next generation
codes

* Support for building decision-support systems for use in real
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